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Abstract

Within the conventional framework of a native space structure, a smooth kernel generates a small
native space, and “radial basis functions” stemming from the smooth kernel are intended to approxi-
mate only functions from this small native space.Therefore their approximation power is quite limited.
Recently, Narcowich et al. (J. Approx. Theory 114 (2002) 70), and Narcowich and Ward (SIAM J.
Math. Anal., to appear), respectively, have studied two approaches that have led to the empowerment
of smooth radial basis functions in a larger native space. In the approach of [NW], the radial basis
function interpolates the target function at some scattered (prescribed) points. In both approaches,
approximation power of the smooth radial basis functions is achieved by utilizing spherical polyno-
mials of a (possibly) large degree to form an intermediate approximation between the radial basis
approximation and the target function. In this paper, we take a new approach. We embed the smooth
radial basis functions in a larger native space generated by a less smooth kernel, and use them to
approximate functions from the larger native space. Among other results, we characterize the best
approximant with respect to the metric of the larger native space to be the radial basis function that
interpolates the target function on a set of finite scattered points after the action of a certain multiplier
operator. We also establish the error bounds between the best approximant and the target function.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Native space; Radial basis function; Reproducing kernels

∗ Corresponding author.
E-mail address:xis280f@smsu.edu(X. Sun).

1 Partially supported by the Engineering and Physical Science Research Council (EPSRC) of Great Britain.

0021-9045/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2004.12.005

http://www.elsevier.com/locate/jat
mailto:xis280f@smsu.edu


270 J. Levesley, X. Sun / Journal of Approximation Theory 133 (2005) 269–283

1. Introduction

Reconstructing an unknown function from scattered data is both theoretically interesting
and practically important. The tools utilized for the reconstruction have included tradition-
ally polynomials and splines, and lately radial basis functions (RBFs). If the domains are
the d-sphereSd embedded in the(d + 1)-dimensional Euclidean spaceRd+1, then the
term “radial basis function” often refers to a linear combination of spherical shifts of a fixed
strictly positive definite zonal kernel�. The kernel� generates a reproducing kernel Hilbert
space (RKHS)N�, called the native space of� in the community of approximation theory.
Let � be a finite subset ofSd . We always assume in this paper that� consists of distinct
points, and we use|�| to denote the cardinality of�. For eachf ∈ N�, lets�[f ] be the best
approximant off from the|�|-dimensional subspace�� :=span{�(〈·, �〉) : � ∈ �}, where
〈·, ·〉 denotes the usual inner product onRd+1, and the best approximant is with respect to
the metric ofN�. Thens�[f ] is uniquely determined by the interpolation condition:

s�[f ](�) = f (�), � ∈ �.

An optimal error estimate for‖s�[f ]−f ‖ is also available, where‖ ·‖ denotes the uniform
norm. We refer the readers to[DNW;GL;JSW;LLRS;MN;Sc]for details on these standard
results. The characterization of the best approximant and consequently the error estimate
therein only apply to functions in the native spaceN�. If the kernel� is smooth, the
associated native spaceN� is small in the sense that it is composed of smooth functions.
Narcowich et al.[NSW] made this observation and proposed the following remedy: Iff
belongs to a larger Sobolev-type spaceWnot contained in the native spaceN�, then they
approximatef first bysL(f ), itsL-th partial sumof its Fourier series. They then approximate
sL(f ) by a radial basis function from��. They obtained the same approximation order as if
f is being approximated by radial basis functions stemming froma less smooth kernel whose
native spacecontainsW.NarcowichandWard[NW] recently tookamoreelaborateapproach
in this direction. They first succeeded (remarkably) in finding a spherical harmonicsPL ∈
HL, the space of all spherical harmonics of degreeL or less, such that

(i) PL interpolates the target functionf on�,
(ii) ‖PL − f ‖�const· dist(f,HL).

They then transfer the approximation power ofPL to a smooth radial basis function from
��. The overall approximation power is comparable to the optimal one. In both approaches,
approximation power is achieved by utilizing spherical polynomials of a (possibly) large
degreeasan intermediate approximation between the radial basis approximant and the target
function.
In this paper, we take a new approach. Suppose that� and� are two zonal kernels,� is

smoother than�. ThereforeN� ⊂ N�. We embed�� in N� and approximatef ∈ N� by
�� in N�. We show (Theorem 3.3) that the best approximants�[f ] of f, with respect to the
metric ofN�, is characterized by the interpolation condition

T (s�[f ])|� = T (f )|�,
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whereT is a multiplier operator explicitly determined by� and�. We also show that the
error estimate for‖s�[f ]−f ‖ is of the same order as ‖s�[f ]−f ‖, wheres�[f ] denotes the
best approximant off from the|�|-dimensional space: span{�(〈·, �〉) : � ∈ �}. In obtaining
the error estimate we will use the “norming set” method developed by Jetter et al.[JSW],
and a general Bernstein-type inequality established by Ditzian[D].Wewill also use a native
space duality argument advocated by Morton and Neamtu[MN].
This approach can also be applied to the Euclidean space setting in which we approxi-

mate functions from a larger native space by smoother radial basis functions, such as the
multiquadrics. We will discuss this issue in a forthcoming publication.
The current paper is arranged as follows. In Section 2, we discuss strictly positive definite

kernels and strictly positive definite functions onSd . In Section 3, we study the structure of
a native space generated by a strictly positive definite zonal kernel, which culminates in the
characterization of the best approximants�[f ] from�� for a functionf ∈ N�. In Section
4, we obtain various estimates for‖s�[f ] − f ‖.

2. Strictly Positive definite kernels and functions on spheres

For eachk = 0, 1, . . ., letH(0)
k be the linear spaceof homogeneousharmonic polynomials

of degreek, and

HL :=
⊕
k�L

H(0)
k .

The dimension ofH(0)
k is denoted bydk. It is well known that

d0 = 1, dk = (2k + d − 1)�(k + d − 1)

�(k + 1)�(d)

and thatH(0)
k = �k∩�⊥

k−1,where�k denotes the linear spaceofhomogeneouspolynomials
of degreek. For eachk = 0, 1, . . ., let {Yk,j : j = 1, . . . , dk} be an orthonormal basis of

H(0)
k with respect to the standard inner product

〈p, q〉 =
∫
Sd

p(x)q(x) d�(x), p, q ∈ H(0)
k ,

whered� is the restriction onSd of the Lebesgue measure inRd+1 whose total mass is
denoted byw�d , i.e.,�d = ∫

Sd
d�(x).

The set

{Yk,� : � = 1, . . . , dk, k = 0, 1, . . . , }
forms an orthonormal basis forL2(Sd). Thus, the collection

{Yk,� · Yl,	 : �, 	 = 1, . . . , dk, k, l = 0, 1, . . . , }
is an orthonormal basis forL2(Sd ×Sd).As usual, wewill call a function defined onSd ×Sd

a kernel onSd , or just a kernel. A functionK ∈ C(Sd × Sd) is called a positive definite, if
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for any finite subset ofSd , and arbitrary real numbersc�, � ∈ �, we have

∑
�∈�

∑

∈�

c�c
K(�, 
)�0. (2.1)

A rather general result of Bochner[B] implies that the totality of all positive definite kernels
K may be represented by the expression

K(x, y) =
∞∑
k=0

dk∑
�=1

dk∑
	=1

ak,�,	Yk,�(x)Yk,	(y), (2.2)

in which, for each fixedk, thedk × dk matrix (ak,�,	), is nonnegative definite, and

∞∑
k=0

dk

dk∑
�=1

dk∑
	=1

|ak,�,	| < ∞.

It is not difficult to see that a kernelK as expressed in Eq. (2.2) is positive definite. A
straightforward calculation shows that

∑
�∈�

∑

∈�

c�c
K(�, 
) =
∞∑
k=0

dk∑
�=1

dk∑
	=1

ak,�,	


∑

�∈�

c�Yk,�(�)




∑

�∈�

c�Yk,	(�)


 .

For eachk = 0, 1, . . ., the quadratic form

dk∑
�=1

dk∑
	=1

ak,�,	


∑

�∈�

c�Yk,�(�)




∑

�∈�

c�Yk,	(�)




is nonnegative because of the nonnegative definiteness of the matrix(ak,�,	).
Wewill use〈x, y〉 orxy, depending on themathematical context, to denote the usual inner

product ofx andy in Rd . Letx andy be two points onSd . The geodesic distance betweenx
andy is denoted byg(x, y), and we havexy = cos(g(x, y)). A kernelK is called rotational
invariant, if

K(�x,�y) = K(x, y) for all x, y ∈ Sd and for all rotations�.

It can be shown that a continuous rotational invariant kernel depends only on the distance
betweenxandy, that is, there is a function� : [−1,1] → R, such that�(xy) = K(x, y) for
all x, y ∈ Sd ; see [SW, Chapter IV]. Therefore a rotational invariant kernel is also called a
zonal kernel in the literature. The study of the zonal kernels is also facilitated by the famous
summation formula:

C
(�)
k (xy) = �d

dk

dk∑
�=1

Yk�(x)Yk�(y),
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where� = (d − 2)/2, andC(�)
k is the order� Gegenbauer polynomials of degreek, nor-

malized so thatC(�)
k (1) = 1; see[Sz]. Hence, a continuous zonal kernel enjoys the simpler

expansion:

K(x, y) = �(xy) ∼
∞∑
k=0

Ak

dk∑
�=1

C
(�)
k (xy).

The summation formula also yields the following useful relation:
dk∑

�=1

|Yk�(x)Yk�(y)|�
dk∑

�=1

Y 2
k�(x) = dk

�d

, x, y ∈ Sd. (2.3)

Schoenberg[S] defined a continuous function� : [−1,1] → R to be “positive definite”
on Sd if the kernelK(x, y) := �(xy) is positive definite. In the same paper, Schoenberg
established the following remarkable result: in order that� be positive definite onSd , it is
necessary and sufficient that

�(t) =
∞∑
k=0

AkC
(�)
k (t), t ∈ [−1,1], (2.4)

in whichAk�0, for all k = 0, 1, . . ., and
∑∞

k=0 Ak < ∞.

We note that the positive definiteness of a function� amounts to the positive definiteness
of the kernel�(xy). Therefore, Schoenberg’s result is a special case of the afore-mentioned
result of Bochner. However, Schoenberg’s result came first even though his paper appeared
one year later than Bochner’s; see[B].
If thequadratic form inEq. (2.1) is positivewhenever thec� arenot all zero, then thekernel

K(x, y) is called strictly positive definite. In the zonal kernel case, the univariate function
� is called strictly positive definite onSd . This notation of strictly positive definiteness
on spheres was introduced by Xu and Cheney[XC] with the motivation of interpolating
arbitrary data on a finite subset� of Sd by a unique function in the span{�(〈·, �〉) : � ∈ �}.
It is important to characterize all the strictly positive definite functions on spheres. Such
an endeavor has been taken by authors in, among others,[XC,M1,M2,RS,CMS,Su]. A
characterization is recently given byChenet al.[CMS] for strictly positive definite functions
on Sd (d�2). Their result asserts that in order that the zonal kernels as expressed in Eq.
(2.4) be strictly positive definite onSd (d�2), it is necessary and sufficient thatAk be
positive for infinitely many oddk’s and infinitely many evenk’s. The problem is still open
for the cased = 1. Some substantial recent progress is reported in[Su].
In applications, however, the most useful strictly positive kernels appear to be the ones

given by Xu and Cheney[XC] which require that all expansion coefficientsAk in Eq. (2.4)
be positive. We will refer them as Xu–Cheney kernels in this paper. The importance of the
Xu–Cheney kernels are reinforced by the following two results:

1. A Xu–Cheney kernel�(xy) enjoys the stronger strict positive definiteness advocated by
Narcowich[N]. Namely, for any functionf ∈ C(Sd), not identically zero, we have∫

Sd

∫
Sd

�(xy)f (x)f (y) d�(x) d�(y) > 0.
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We caution here that there exist functions that are strictly positive definite in the conven-
tional sense but fail to satisfy this stronger requirement; see[RS].

2. Span{�(�·), � ∈ Sd} is dense inC(Sd); see [SC,RL].

In the next two sections, we will use Xu–Cheney kernels to set up native spaces and study
approximations in these spaces.

3. Best approximation in native spaces

Despite the simpler form as in Eq. (2.4), we choose to write a Xu–Cheney kernel�(xy)
in the following form for the convenience of our presentation:

�(xy) =
∞∑
k=0

ak

dk∑
�=1

Yk,�(x)Yk,�(y), (3.1)

whereak > 0, for all k = 0, 1,2, . . ., and
∑∞

k=0 akdk < ∞. Of course, the coefficientak
in Eq. (3.1) and the coefficientAk in Eq. (2.4) have the relationAk = ak

dk
�d

. We consider
the linear space consisting of all the finite linear combinations of zonal shifts of�. Denote
this linear space byPH�, and define the following bilinear form onPH�:

〈f, g〉PH� :=
∑
�∈�

∑

∈


c�d
�(�
),

wheref = ∑
�∈� c��(�·), andg = ∑


∈
 d
�(
·), and both� and
 are finite subsets
of Sd. It is easy to verify that this is an inner product onPH� thanks to the strict positive
definiteness of�.
The native spaceN�, associated with�, is the subspace ofL2(S

d) defined by

N� :=

f =

∞∑
k=0

dk∑
�=1

f̂k,�Yk,�(·) :
∞∑
k=0

a−1
k

dk∑
�=1

f̂ 2
k,� < ∞


 ,

wheref̂k,� is defined by

f̂k,� :=
∫
Sd

f (x)Yk,�(x) d�(x).

The native spaceN� is a Hilbert space with the inner product:

〈f, g〉N� =
∞∑
k=0

a−1
k

dk∑
�=1

f̂k,�ĝk,�.

Proposition 3.1. The native spaceN� is a reproducing kernel Hilbert space,and the
reproducing kernel is�(xy).
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Proof. We already know thatN� is a Hilbert space. So we just need to check that�(xy) is
the reproducing kernel. Takef ∈ N�, and write

f =
∞∑
k=0

dk∑
�=1

f̂k,�Yk,� with
∞∑
k=0

a−1
k

dk∑
�=1

f̂ 2
k,� < ∞.

For a fixedx ∈ Sd, we have

〈f (·),�(x·)〉N� =
∞∑
k=0

a−1
k

dk∑
�=1

akf̂k,�Yk,�(x) = f (x). �

We can now reveal the relationship betweenN� andPH�.

Proposition 3.2. The native spaceN� is the completion ofPH�.

Proof. It is obvious thatPH� ⊂ N�. For f ∈ PH�, we write

f (�) =
∑
�∈�

c��(��) =
∞∑
k=0

ak

dk∑
�=1


∑

�∈�

c�Yk,�(�)


Yk,�(�).

We then have

‖f ‖2PH�
=

∞∑
k=0

ak

dk∑
�=1


∑

�∈�

c�Yk,�(x)




2

= ‖f ‖2N�
.

To complete the proof, we need to show thatPH� is dense inN�. Suppose thatg ∈ N�, and
〈f, g〉N� = 0 for all f ∈ PH�. In particular,〈�(·x), g(·)〉N� = 0 for each fixedx ∈ Sd .
But

〈�(·x), g(·)〉N� = g(x),

because� is the reproducingkernel ofN�.Thusg(x) = 0 for allx ∈ Sd .Thedesireddensity
result thus follows from the Hilbert space version of the Riesz representation theorem.�

Let�(xy),�(xy) be two Xu–Cheney kernels. Write

�(xy) =
∞∑
k=0

ak

dk∑
�=1

Yk,�(x)Yk,�(y),

�(xy) =
∞∑
k=0

bk

dk∑
�=1

Yk,�(x)Yk,�(y).
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Assuming thatak�bk for all k = 0, 1, . . ., we then see thatN� is a subset ofN�. However,
the embedding operatorf �→ f from N� to N� is generally not isometric. We define a
multiplier operatorT fromN� toN� by the following rule:

Tf =
∞∑
k=0

ak

bk

dk∑
�=1

f̂k,�Yk,�.

Clearly, T turns into the identity operator if and only ifak = bk for all k. We intend
to approximate an arbitrary functionf ∈ N� by the |�|-dimensional subspace�� :=
span{�(·�), � ∈ �}.We uses�[f ] to denote the best approximant off from�� with respect
to the metric ofN�, and we useP� to denote the projection operator that mapsf ∈ N� to
s�[f ].We give a characterization fors�[f ] in terms of a target functionf and the multiplier
operatorT.

Theorem 3.3. Let f ∈ N�, and lets�[f ] be the unique best approximant of f from��
with respect to the metric ofN�.Write

s�[f ] =
N∑

�∈�

c��(·�).

Then the coefficientsc�, � ∈ �, are determined by the interpolation conditions

T (s�[f ])|� = T (f )|�.

Proof. Since both the multiplier operatorT and the projection operatorP� are linear and
bounded fromN� toN�, in view of Proposition 3.2, we may assume thatf is of the form:
f (·) = �(x·) for a fixed x. Note thats�[f ] is the best approximant tof if and only if
s�[f ] = P�f , which is equivalent to

(f − s�[f ]) ⊥ �(·�) for all � ∈ �.

That is

〈s�[f ],�(·�)〉N� = 〈f,�(·�)〉N� for all � ∈ �. (3.2)

We calculate

〈s�[f ],�(·�)〉N� =
∑

∈�

c


∞∑
k=0

ak
ak

bk

dk∑
�=1

Yk,�(
)Yk,�(�)

=

∑


∈�

c
T (�(·
)


∣∣∣∣∣∣
�

= T (s�[f ])|�) (3.3)
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and

〈f,�(·�)〉N� =
∞∑
k=0

bk
ak

bk

dk∑
�=1

Yk,�(x)Yk,�(�) = T (f )|�. (3.4)

Substituting Eqs. (3.3) and (3.4) into Eq. (3.2), we haveT (s�[f ])|� = T (f )|�. �

4. Error estimates

The reproducing kernel�(xy) plays an important role in the approximation of functions
in N� by functions in��. We first fix an x∈ Sd , and investigate how well the function
�x : y �→ �(xy) can be approximated by functions in�� in the metric of the native space
N�. The mesh normh of � defined by

h := sup
x∈Sd

min
�∈�

d(x, �),

whered(x, �) denotes the geodesic distance betweenx and�, is an important gauge for the
approximation. In what follows, we take the liberty of usingC to denote a constant whose
exact value may be different from line to line.
To establish our error estimates, we will need the following two important results.

Lemma 4.1. Let M be a multiplier operator defined onHL (embedded inC(Sd)) by

M(p) =
L∑

k=0

dk∑
�=1

mk,�ak,�Yk,�,

where

p =
L∑

k=0

dk∑
�=1

ak,�Yk,�.

Then

‖M(p)‖�C

(
max
k,�

mk,�

)
‖p‖,

where C is a constant independent of f and L.

Lemma 4.1 is a special case of a rather general Bernstein-type inequality established by
Ditzian [D, Theorem 3.2].

Lemma 4.2. Let� ⊂ Sd be a finite knot set with mesh normh(�)�1/(2L). Then for any
linear functional� onHL (embedded inC(Sd)), ‖�‖∗ = 1, there exist|�| real numbers
��, � ∈ � with

∑
�∈� |��|�2, so that

�(f ) =
∑
�∈�

����(f ),

for all f ∈ HL, where�� denotes the point evaluation functional at the point� in �.
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Lemma 4.2 is due to Jetter et al.[JSW]. The result is the corner stone for the so-called
“norming set” approach that has quickly become a standard tool for authors in native space
approximation.

Theorem 4.3. Let� ⊂ Sd be a finite set with mesh normh(�)�1/(2L). Assume that the
sequencebk/ak is monotone increasing.Then for each fixedx ∈ Sd , we have

‖�x − s�[�x]‖N� �C

( ∞∑
k>L

bkdk

)1/2

.

Here the constant C is independent of f and x.

Before we embark on the proof of the theorem, wemake a comment on the assumption that
the sequencebk/ak be monotone increasing. This assumption is not necessary, and can be
relaxed considerably. However, imposing the condition reduces some inessential details of
the proof which would otherwise be too long. After all, the primary goal in this paper is to
expand the approximation power of the�-dimensional space��, which can be achieved
by conveniently choosingbk = kmak for a proper natural numberm. With this choice, the
sequencebk/ak is monotone increasing.

Proof of Theorem 4.3. It suffices to show that there exists ans ∈ ��, s = ∑
�∈� ���(�·),

such that

‖s − �x‖N� �C

( ∞∑
k>L

bkdk

)1/2

.

We have

‖s − �x‖N� = sup
v∈N�

‖v‖N�
=1

〈s − �x, v〉N�

= sup
v∈N�

‖v‖N�
=1

∞∑
k=0

b−1
k

dk∑
�=1

v̂k,�


ak

∑
�∈�

��Yk,�(�) − bkYk,�(x)




= sup
v∈N�

‖v‖N�
=1

∞∑
k=0

akb
−1
k

dk∑
�=1

v̂k,�


∑

�∈�

��Yk,�(�) − bka
−1
k Yk,�(x)


 .

Let TL be the multiplier operator defined onHL (embedded inC(Sd)) by

TL(Yk,�) = bk

ak
Yk,�

for eachk = 0, 1, . . . , L, and all� = 1,2, . . . , dk, and extended linearly throughoutHL.
Let � be the linear functional onHL defined by:� = �x ◦ TL. That is�(p) = (TL(p)) (x)
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for eachp ∈ HL. By Lemma 4.1 and the assumption that the sequencebk/ak is monotone
increasing, we have

|�(p)| = | (TL(p)) (x)|�‖TL(p)‖�C max
0�k�L

bk

ak
‖p‖ = C

bL

aL
‖p‖,

in whichC is a constant independent ofpandL. By Lemma 4.2, there exist|�| real numbers
��, � ∈ � with

∑
�∈� |��|�2C bL

aL
such that

∑
�∈�

��Yk,�(�) = bk

ak
Yk,�(x), Yk,� ∈ HL.

With �� thus chosen, we have

‖s − �x‖N� = sup
v∈N�

‖v‖N�
=1

∑
k>L

akb
−1
k

dk∑
�=1

v̂k,�


∑

�∈�

��Yk,�(�) − bka
−1
k Yk,�(x)




= sup
v∈N�

‖v‖N�
=1


∑

�∈�

��

∑
k>L

akb
−1
k

dk∑
�=1

v̂k,�Yk,�(�)−
∑
k>L

dk∑
�=1

v̂k,�Yk,�(x)




� sup
v∈N�

‖v‖N�
=1


∑

�∈�

|��|
∑
k>L

akb
−1
k

∣∣∣∣∣∣
dk∑

�=1

v̂k,�Yk,�(�)

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
k>L

dk∑
�=1

v̂k,�Yk,�(x)

∣∣∣∣∣∣

 .

We use the Cauchy–Schwartz Inequality and the relation in (2.3) to estimate the sums to
get

‖s − �x‖N� �


∑

�∈�

|��|

 · max

�∈�


∑

k>L

a2k

bk

dk∑
�=1

Y 2
k,�(�)




1/2

· sup
v∈N�

‖v‖N�
=1


∑

k>L

dk∑
�=1

v̂2k,�

bk




1/2

+

∑

k>L

bk

dk∑
�=1

Y 2
k,�(x)




1/2

· sup
v∈N�

‖v‖N�
=1


∑

k>L

dk∑
�=1

v̂2k,�

bk




1/2
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� 2C
bL

aL

(∑
k>L

a2k

bk

dk

�d

)1/2

+
(∑
k>L

bk
dk

�d

)1/2

� (2C + 1)

(∑
k>L

bk
dk

�d

)1/2

.

The last inequality is true becausebk/ak is a monotone increasing sequence.�

Remark 4.4. The duality argument we used here is adapted from that of Proposition 10 by
Morton and Neamtu[MN]. If b k = ak for all k = 0, 1,2, . . ., thenC = 1, and Theorem
2.6 reduces itself to Proposition 10 in[MN].

Corollary 4.5. Let� ⊂ Sd be a finite set with mesh normh(�)�1/(2L). Then for every
f ∈ N�, we have

‖f − s�[f ]‖�C‖f − s�[f ]‖N�


 ∞∑

k�L

bkdk




1/2

.

Here the constant C is independent of f.

Proof. For each fixedx ∈ Sd , we have

|f (x) − s�[f ](x)|
= |〈f − s�[f ],�x〉N� |
= |〈f − s�[f ],�x − s�[�x]〉N� |
�‖f − s�[f ]‖N�‖�x − s�[�x]‖N�

�C‖f − s�[f ]‖N�


 ∞∑

k�L

bkdk




1/2

.

In the second line of the above argument, we used the fact that�(xy) is the reproducing
kernel of the native spaceN�. In the third line, we used the orthogonality(f − s�[f ]) ⊥
��. In the fourth line, we used the Cauchy–Schwartz Inequality. In the fifth line, we used
Theorem 4.3. �

Remark 4.6. The factor‖f − s�[f ]‖N� in Corollary 4.5 is hard to estimate, and therefore
the obvious inequality

‖f − s�[f ]‖N� �‖f ‖N�

is often applied to yield the following “cleaner” error estimate in Corollary 4.5:

‖f − s�[f ]‖�C‖f ‖N�

∞∑
k�L

bkdk.



J. Levesley, X. Sun / Journal of Approximation Theory 133 (2005) 269–283 281

In the special caseb2k = ak andf ∈ N�, a so-called “error doubling” technique has been
used to derive an estimate for‖f −s�[f ]‖N� . The techniquewas first explored bySchaback
[Sc] in the Euclidean space setting, and has been subsequently adapted in spherical domains
in [LLRS,GL,MN], among other publications. Note thatb2k = ak is equivalent to� = �∗�,
where

(� ∗ �)(x, y) =
∫
Sd

�(xz)�(zy) d�(z).

In Proposition 4.7 below, we modify the proof of Proposition 12 by Morton and Neamtu
[MN] to obtain a slightly more general result.

Proposition 4.7. Let� ⊂ Sd be a finite knot set with mesh normh(�)�1/(2L). Suppose
that there is aC > 0 such thatak/b2k �C. Then for eachf ∈ N�, we have

‖f − s�[f ]‖N� �C

( ∞∑
k>L

bkdk

)1/2

‖f ‖N� .

Proof. To avoid awkward writing, we use the abbreviationŝk,� to denote the(k,�)-
coefficient of the Fourier series expansion ofs�[f ], that is,

s�[f ] =
∞∑
k=0

dk∑
�=1

ŝk,�Yk,�.

We use the Cauchy–Schwartz inequality to deduce that

‖f − s�[f ]‖2N�
= 〈f, f − s�[f ]〉N�

=
∞∑
k=0

b−1
k

dk∑
�=1

f̂k,� (f̂k,� − ŝk,�)

�


 ∞∑

k=0

a−1
k

dk∑
�=1

(f̂k,�)
2




1/2
 ∞∑

k=0

ak

b2k

dk∑
�=1

(f̂k,� − ŝk,�)
2




1/2

=C‖f ‖N�‖f − s�[f ]‖2. (4.1)

Here‖f − s�[f ]‖2 denotes the regularL2 norm of the functionf − s�[f ]. Hölder’s
inequality yields

‖f − s�[f ]‖2��1/2
d ‖f − s�[f ]‖ (4.2)

and Corollary 4.5 yields

‖f − s�[f ]‖�C�1/2
d ‖f − s�[f ]‖N�

( ∞∑
k>L

bkdk

)1/2

. (4.3)
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Connecting (4.1)–(4.3), we obtain

‖f − s�[f ]‖2N�
�C‖f − s�[f ]‖N�

( ∞∑
k>L

bkdk

)1/2

‖f ‖N� . (4.4)

If ‖f − s�[f ]‖N� = 0, then the result is automatically true. Otherwise we divide by
‖f − s�[f ]‖N� on both sides of Inequality (4.4) to get the desired result.�

On some occasions, it is desirable to express the error estimate in terms ofh. This can be
done by makingh and 1/Lcompatible in the sense thath = O(1/L). In Corollary 4.8 that
follows, we deal with an important special case.

Proposition 4.8. Letf ∈ C2l (Sd), and lets�[f ] be the best approximant of f from�� as
characterized by Theorem3.3.Assume thatak�Ck−2� for some��2l > d/2,where C is
a constant independent of k.Then we have the estimate

‖f − s�[f ]‖�Ch2l−d/2‖f − s�[f ]‖N� ,

where C is a constant independent of f and�.

Proof. Let f ∈ C2l (Sd). Then by Inequality (2.7) in[NW], we have f∈ N� with

�(xy) =
∞∑
k=0

k−4l
dk∑

�=1

Yk,�(x)Yk,�(y).

If ak�ck−2�, then

�� ⊂ N�.

By Corollary 4.5, we have

‖f − s�[f ]‖�C‖f − s�[f ]‖N�

( ∞∑
k>L

k−4l dk

)1/2

.

Using the relationdk ∼ kd−1, we get the estimate

( ∞∑
k>L

k−4l dk

)1/2

∼ (1/L)2l−d/2 ∼ h2l−d/2.

The desired result then follows.�

Remark 4.9. The order of approximation given in Proposition 4.8 is the same as in Propo-
sition 3.1 in[NSW] and Corollary 3.3 in[NW]. We remind readers that the approximating
functions used in the three occasions are all different. In particular, ours are characterized
by Theorem 3.3 in this paper.
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