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Abstract

Within the conventional framework of a native space structure, a smooth kernel generates a small
native space, and “radial basis functions” stemming from the smooth kernel are intended to approxi-
mate only functions from this small native space. Therefore their approximation power is quite limited.
Recently, Narcowich et al. (J. Approx. Theory 114 (2002) 70), and Narcowich and Ward (SIAM J.
Math. Anal., to appear), respectively, have studied two approaches that have led to the empowerment
of smooth radial basis functions in a larger native space. In the approach of [NW], the radial basis
function interpolates the target function at some scattered (prescribed) points. In both approaches,
approximation power of the smooth radial basis functions is achieved by utilizing spherical polyno-
mials of a (possibly) large degree to form an intermediate approximation between the radial basis
approximation and the target function. In this paper, we take a new approach. We embed the smooth
radial basis functions in a larger native space generated by a less smooth kernel, and use them to
approximate functions from the larger native space. Among other results, we characterize the best
approximant with respect to the metric of the larger native space to be the radial basis function that
interpolates the target function on a set of finite scattered points after the action of a certain multiplier
operator. We also establish the error bounds between the best approximant and the target function.
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1. Introduction

Reconstructing an unknown function from scattered data is both theoretically interesting
and practically important. The tools utilized for the reconstruction have included tradition-
ally polynomials and splines, and lately radial basis functions (RBFs). If the domains are
the d-spheres? embedded in theéd + 1)-dimensional Euclidean spad¥ 1, then the
term “radial basis function” often refers to a linear combination of spherical shifts of a fixed
strictly positive definite zonal kernél. The kernelp generates a reproducing kernel Hilbert
space (RKHS)V, called the native space ¢fin the community of approximation theory.

Let = be a finite subset o$?. We always assume in this paper tfatonsists of distinct
points, and we uskE| to denote the cardinality &. For eachf € Ny, letsy[ f]be the best
approximant of from the|Z|-dimensional subspacks :=span{p((-, &)) : ¢ € E}, where

(-, -y denotes the usual inner product Bfit1, and the best approximant is with respect to
the metric ofV;. Thensy[ 1 is uniquely determined by the interpolation condition:

self1O) = f(O), L€k

An optimal error estimate fdfs,[ f]1— f|l is also available, wherg- || denotes the uniform
norm. We refer the readers [oNW;GL;JSW;LLRS;MN;Sc]for details on these standard
results. The characterization of the best approximant and consequently the error estimate
therein only apply to functions in the native spatg. If the kernel¢ is smooth, the
associated native spagg; is small in the sense that it is composed of smooth functions.
Narcowich et al[NSW] made this observation and proposed the following remediy: If
belongs to a larger Sobolev-type sp&¢@ot contained in the native spagé;, then they
approximatéfirst bys; (f), its L-th partial sum of its Fourier series. They then approximate

s (f) by aradial basis function fromh=. They obtained the same approximation order as if

fis being approximated by radial basis functions stemming from a less smooth kernel whose
native space contaiig. Narcowich and WaridNW] recently took a more elaborate approach

in this direction. They first succeeded (remarkably) in finding a spherical harmBpies

‘H 1, the space of all spherical harmonics of dedre® less, such that

(i) P interpolates the target functidron =,
(i) 1PL — fll<const dist(f, HL).

They then transfer the approximation powerRf to a smooth radial basis function from
®z. The overall approximation power is comparable to the optimal one. In both approaches,
approximation power is achieved by utilizing spherical polynomials of a (possibly) large
degree as an intermediate approximation between the radial basis approximant and the target
function.

In this paper, we take a new approach. Supposedttzaidy are two zonal kernelsp is
smoother thany. ThereforeVy c N,. We embedpz in AV, and approximatg’ € Ny, by
@z in NV,,. We show (Theorem 3.3) that the best approximgif] of f, with respect to the
metric of Vy,, is characterized by the interpolation condition

T(splfDlz =Tz,
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whereT is a multiplier operator explicitly determined gy andy,. We also show that the
error estimate folts[ f1— f1| is of the same order as j|sf 1 — f ||, wheresy [ f] denotes the
best approximant dffrom the|Z|-dimensional space: spah({(-, &)) : £ € Z}. In obtaining
the error estimate we will use the “norming set” method developed by Jetter{&54/],
and a general Bernstein-type inequality established by DifEiatnVe will also use a native
space duality argument advocated by Morton and Nedikiij.

This approach can also be applied to the Euclidean space setting in which we approxi-
mate functions from a larger native space by smoother radial basis functions, such as the
multiquadrics. We will discuss this issue in a forthcoming publication.

The current paper is arranged as follows. In Section 2, we discuss strictly positive definite
kernels and strictly positive definite functions §f In Section 3, we study the structure of
a native space generated by a strictly positive definite zonal kernel, which culminates in the
characterization of the best approximagkf] from @z for a functionf e N, In Section
4, we obtain various estimates fior,[ /1 — f1I.

2. Strictly Positive definite kernels and functions on spheres

Foreactk =0,1, ..., IetH,((O) be the linear space of homogeneous harmonic polynomials
of degreek, and

0
HL = @ ’H,,(( ).
k<L

The dimension of{

,((0) is denoted byi. It is well known that

_ (@k+d—DI(k+d—1)

do=1. d
o== % T'(k+ D)

and thaﬂ-[,(co) = Hkﬂl'lkﬁl, wherell; denotes the linear space of homogeneous polynomials
of degreek. Foreachk = 0,1, ..., let{Y;; : j = 1,...,d} be an orthonormal basis of

7—[,({0) with respect to the standard inner product

(p.q) = /S p()gx)du(x), p,qeH,

wheredyu is the restriction ors¢ of the Lebesgue measure Rft1 whose total mass is
denoted bywawy, i.€.,wq = [ga dp(x).
The set

Yeu:pu=1,...,d, k=0,1,...,}
forms an orthonormal basis f@r?(S¢). Thus, the collection
{Yk‘ﬂ-Ym:,u,v:l,...,dk, k,1=0,1,...,}

is an orthonormal basis fdr2 (9 x §¢). As usual, we will call a function defined & x $¢
a kernel ons?, or just a kernel. A functioiC e C (5 x §¢) is called a positive definite, if
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for any finite subset o$¢, and arbitrary real numbets, ¢ € =, we have
DD ceecKE D=0, (2.2)
teE (eZ

Arather general result of BochnfB] implies that the totality of all positive definite kernels
K may be represented by the expression

oo dr d

K,y =YY" Y akpr Y u®) Y (), (2.2)

k=0 pu=1 v=1

in which, for each fixedk, thed) x d; matrix (a ,.,v), is nonnegative definite, and

00 dy  dx
di Z Z |ak”u,y| < 00.
k=0 u=1v=1

It is not difficult to see that a kernél as expressed in Eq. (2.2) is positive definite. A
straightforward calculation shows that

oo dp d
Z Z ceetK(S, 0 = Z Z Z Ak, pi,v Z ceYr u(©) Z ceYiv(©)
leE (eE k=0 pu=1 v=1 EeE feE

Foreachk =0, 1, ..., the quadratic form

dry  dy
Z Z Ak, v Z Cg’Yk,u(é) Z C;’Yk,v(i)
u=1v=1 teE EeE

is nonnegative because of the nonnegative definiteness of the raatfix).

We will use(x, y) orxy, depending on the mathematical context, to denote the usual inner
product ofx andy in R?. Letx andy be two points or5¢. The geodesic distance between
andy is denoted by (x, y), and we havey = cos(g(x, y)). A kernelC is called rotational
invariant, if

K(px, py) =K(x,y) forallx,ye s and for all rotation.

It can be shown that a continuous rotational invariant kernel depends only on the distance
betweenxandy, thatis, thereis afunctiap : [—1,1] — R, suchthatp(xy) = K(x, y) for

all x, y € §¢; see [SW, Chapter IV]. Therefore a rotational invariant kernel is also called a
zonal kernel in the literature. The study of the zonal kernels is also facilitated by the famous
summation formula:

dy
J oy}
C (xy) = a0 2o YY),
n=1
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wherel = (d — 2)/2, andC,E)‘) is the order/ Gegenbauer polynomials of degreenor-

malized so thaC,E;”)(l) = 1, se€g[Sz]. Hence, a continuous zonal kernel enjoys the simpler
expansion:

00 dy )
K@, y) = day) ~ D A Y P ).
k=0 n=1

The summation formula also yields the following useful relation:

dy di dk
D W) YIS Y Yo, =—, x.yes’. (2.3)
u=1 u=1 @d

Schoenber{S] defined a continuous functiaf: [—1,1] — R to be “positive definite”
on §¢ if the kernelKC(x, y) := ¢(xy) is positive definite. In the same paper, Schoenberg
established the following remarkable result: in order thae positive definite o8¢ , it is
necessary and sufficient that

o0 =Y 4P, re[-1.1] (2.4)

k=0

inwhich A >0, forallk =0, 1,..., and) ;2 Ax < oo.

We note that the positive definiteness of a functiommounts to the positive definiteness
of the kernelkp(xy). Therefore, Schoenberg’s result is a special case of the afore-mentioned
result of Bochner. However, Schoenberg’s result came first even though his paper appeared
one year later than Bochner's; 483.

Ifthe quadratic formin Eq. (2.1) is positive whenever¢pare notall zero, then the kernel
K(x, y) is called strictly positive definite. In the zonal kernel case, the univariate function
¢ is called strictly positive definite 0§¢. This notation of strictly positive definiteness
on spheres was introduced by Xu and Chef}§] with the motivation of interpolating
arbitrary data on a finite subsgtof $¢ by a unique function in the spap((-, £)) : ¢ € 5}.

It is important to characterize all the strictly positive definite functions on spheres. Such
an endeavor has been taken by authors in, among ofh&esyvil,M2,RS,CMS,Su]. A
characterization is recently given by Chen ef@MS] for strictly positive definite functions

on ¢ (d >2). Their result asserts that in order that the zonal kernels as expressed in Eq.
(2.4) be strictly positive definite 08¢ (d >2), it is necessary and sufficient thaj, be
positive for infinitely many oddk’s and infinitely many evek’s. The problem is still open

for the casel = 1. Some substantial recent progress is report¢8uh

In applications, however, the most useful strictly positive kernels appear to be the ones
given by Xu and ChenejkC] which require that all expansion coefficients in Eq. (2.4)
be positive. We will refer them as Xu—Cheney kernels in this paper. The importance of the
Xu—-Cheney kernels are reinforced by the following two results:

1. A Xu-Cheney kernep(xy) enjoys the stronger strict positive definiteness advocated by
Narcowich[N]. Namely, for any functionf e C(5¢), not identically zero, we have

/Sd /Sd D(xy) f () f(y) dpu(x) du(y) > 0.
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We caution here that there exist functions that are strictly positive definite in the conven-
tional sense but fail to satisfy this stronger requirement{R&3.
2. Spanp (&), & € S is dense inC(59); see [SC,RL].

In the next two sections, we will use Xu—Cheney kernels to set up native spaces and study
approximations in these spaces.

3. Best approximation in native spaces

Despite the simpler form as in Eq. (2.4), we choose to write a Xu—Cheney kiingl
in the following form for the convenience of our presentation:

00 dy
POy) =D ax Y Vi u@)Yeu(y). (3.1)

whereqg, > 0,forallk =0,1,2,..., andz,fio ard; < oo. Of course, the coefficient;
in Eq. (3.1) and the coefficient; in Eq. (2.4) have the relatioA; = ax j)—kd. We consider
the linear space consisting of all the finite linear combinations of zonal shiftsB&note
this linear space by’H 4, and define the following bilinear form abRH ,:

(f. ey =Y Y cedrdp(CD),

teE (€O

where f = de cep(é), andg = de@ dr¢((-), and both= and @ are finite subsets

of §¢. It is easy to verify that this is an inner product B thanks to the strict positive
definiteness o#.
The native spac#/y, associated witkp, is the subspace df,(5?) defined by

oo dy
Np=37=D" feuliul): Z kau<oo :
k=0 u=1
where f;. , is defined by

fou= /S | SO0 du).

The native spac/, is a Hilbert space with the inner product:

00 di
Z Z kugku

Proposition 3.1. The native spaceV,, is a reproducing kernel Hilbert spacand the
reproducing kernel ig(xy).
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Proof. We already know that/;, is a Hilbert space. So we just need to check th@ty) is
the reproducing kernel. Take € N, and write

oo di
F=>_" feYiyu with Z 1kau<oo

k=0 u=1

For a fixedx € $9, we have
00 dy .
(FOLPENN, =D art Y axfipYeu) = f(). O

We can now reveal the relationship betwe€p and PH .
Proposition 3.2. The native spacé/, is the completion oPH .

Proof. Itis obvious thatPH ; C Ny. For f € PH y, we write

fn =Y cepén = Z a Z (Z cc;Yk,ﬂ@)) Yeu ().

el k=0 u=1 \¢tez
We then have
[e’e) dy 2
1AW, =Y a [ D0 cetin@ | =115,
k=0 n=1 \éez

To complete the proof, we need to show tRé , is dense inV,. Suppose that € Ny, and
(f 8N, =0 forall f € PH . In particular,(¢(-x), 8N, =0 for each fixedr € §9.
But

((x), g, = g(0),

because is the reproducing kernel N¢.Thu3g(x) = Oforallx € S¢. The desired density
result thus follows from the Hilbert space version of the Riesz representation theorém.

Let ¢(xy), Y (xy) be two Xu—Cheney kernels. Write

00 dy
POey) =Y ar Y Yeu)Yeu(y),
k=0  p=1

00 dy
Yoy =Y bk Y Yeu()Yiu(y).
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Assuming thaty <b; forallk = 0,1, ..., we then see tha/,, is a subset alV,. However,
the embedding operatgf — f from N, to Ny, is generally not isometric. We define a
multiplier operatoiT from \,;, to Ny by the following rule:

00 a dy
Tf = Z E Z fk,,qu,,u-
k=0 =1

Clearly, T turns into the identity operator if and only i, = by for all k. We intend
to approximate an arbitrary functiofi € A, by the |Z|-dimensional subspacés :=
spar{¢(-<), ¢ € E}. We usesy[ f]to denote the best approximantfdfom &z with respect
to the metric of/\fl/,, and we useP to denote the projection operator that mgps J\Q, to
syl f1. We give a characterization feg[ f] in terms of a target functiohand the multiplier
operatorT.

Theorem 3.3. Let f € Ny, and letsy[ f] be the unique best approximant of f frabz
with respect to the metric o¥,. Write

N

splf1= ) ced(:0).

teE
Then the coefficients;, ¢ € Z, are determined by the interpolation conditions
T(splfDIz=T()l=.

Proof. Since both the multiplier operatdrand the projection operatat, are linear and
bounded fromV,, to Ny, in view of Proposition 3.2, we may assume that of the form:

f() = Y(x-) for a fixed x. Note that [ f] is the best approximant tif and only if

s¢lf1= Py f, which is equivalent to

(f =sglfD L @(:&) foralllek.

Thatis
(spLf1, GO, = (f (O, forallé ez, (32)
We calculate
o) dy
(oL FL DCOMN, =D e Y a Z—’; 3 Vi wOYeu(d

I
N
<
Pﬂ
s
T
~ .

= T(sg[fDI2) (3.3)



J. Levesley, X. Sun / Journal of Approximation Theory 133 (2005) 269—-283 277

and
00 ar dy
(f, pCO)N, = /; bi g ; Yeu ) Yiu(©) = T(f)le. (3.4)
Substituting Egs. (3.3) and (3.4) into Eq. (3.2), we havey[fD|z = T(f)lz. U

4. Error estimates

The reproducing kernef(xy) plays an important role in the approximation of functions
in NV, by functions in®z. We first fix an x e $4, and investigate how well the function
Y, 1y — Y(xy) can be approximated by functionsdry in the metric of the native space
Ny The mesh nornh of Z defined by

h := sup min d(x, &),
xes§d GE=
whered (x, £) denotes the geodesic distance betweand?, is an important gauge for the
approximation. In what follows, we take the liberty of usi@do denote a constant whose
exact value may be different from line to line.
To establish our error estimates, we will need the following two important results.

Lemma 4.1. Let M be a multiplier operator defined ¢, (embedded irC'(5¢)) by

L dg
M(p) = Z Z mk,uak,,qu,,uy
where
L dy
P=2_ 2 au¥iw
k=0 pu=1
Then

IM(p)lI<C (T%ka,u) Ipll,
where C is a constant independent of f and L.

Lemma 4.1 is a special case of a rather general Bernstein-type inequality established by
Ditzian [D, Theorem 3.2].

Lemma 4.2. Let= c S be a finite knot set with mesh nofm=) <1/(2L). Then for any
linear functionale on #; (embedded irC(5%)), |lol« = 1, there existZ| real numbers
ag, & € Ewith Zéeg log] <2, s0 that

o(f) =y a:0:(f),

=)

forall f € H,, whered; denotes the point evaluation functional at the pdiim =.
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Lemma 4.2 is due to Jetter et fISW]. The result is the corner stone for the so-called
“norming set” approach that has quickly become a standard tool for authors in native space
approximation.

Theorem 4.3. Let=Z ¢ $9 be a finite set with mesh norii=) <1/(2L). Assume that the
sequenceéy /ax is monotone increasindhen for each fixed € S¢, we have

00 1/2
W, = splb iy <C (Z bkdk> .

k>L

Here the constant C is independent of f and x.

Before we embark on the proof of the theorem, we make a comment on the assumption that
the sequencky /a; be monotone increasing. This assumption is not necessary, and can be
relaxed considerably. However, imposing the condition reduces some inessential details of
the proof which would otherwise be too long. After all, the primary goal in this paper is to
expand the approximation power of thedimensional spacéz, which can be achieved

by conveniently choosing, = k™ a; for a proper natural numben. With this choice, the
sequencéy /ax iS monotone increasing.

Proof of Theorem 4.3. It suffices to show that there existsag ®z,s = des Bep(Co),
such that

00 1/2
Is = W,y <C (Z bkdk> |

k>L
We have
s = l)bx”./\/;/, = sup <S - ’ﬁx’ U>N,/,
ve./\fd,
HU”anzzl

sup Z be Z D | a Z BeYeu(&) — biYiu(x)

IEN
1
HvHNw—l k=0 #=

[1]

di
sup Z abt Y B [ Y Be¥in(©) — brag i u(x)
HvHNw—l =0 u=t ceZ

Let 77 be the multiplier operator defined 6¢; (embedded irC (5%)) by

by
TL(Yk,,u) = Yk,,u
ak

foreachk =0,1,...,L,andallu = 1,2, ..., d;, and extended linearly throughoht .
Let o be the linear functional of(; defined byis = 6, o T;,. Thatisa(p) = (Tp(p)) (x)
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for eachp € Hy. By Lemma 4.1 and the assumption that the sequépgte. is monotone
increasing, we have

by by
= | (T, <|T, <C max — =C— )
la(p)| = | (TL(p)) O)I<ITL(p)] oI, Ipl 0 lpl

LS

in whichCis a constant independentméndL. By Lemma 4.2, there exigE| real numbers
Be, ¢ € Zwith 3.z |f¢| <2C 2 such that

> BeYiu(d = — Yk W), Y€ Hr
teZ

With f3: thus chosen, we have

s—¥ilay = sup Y bt va > BeYiu(©) = brag Vi u(x)

veN,
v
Il ar, =1 k=L p=l cez
= Ssup Z ﬁg“ Z akb Z Uk, u Yk, u(é) Z Z Vg, 1 Yie,u(x)
vely teZ k>L k>L pu=1
iy, = b
_ 0
—1 ~
< osup | DB D arb M kY (O
uul;\er—l CeE k=L p=1
n, =t b
3
+ 22 D BV
k>L u=1

We use the Cauchy—Schwartz Inequality and the relation in (2.3) to estimate the sums to
get

. 4 1/2
a
s=Y g, < | D] 1B - max D D Y
eE €2 \k=r % 21
4 52 1/2 1/2
M
w (T8 5] (el ae
VMY \k>L p=1 k>L
Il =1
4 52 1/2
SH
sup [} > -
kL =1 K
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b a2 a4\ i\’
L k Yk k
<20 = £ = b —

k>L k>L
J 1/2
<(2c+1)<2 bk—k> .
k>L Wd

The last inequality is true becaubg/ay is a monotone increasing sequencel

Remark 4.4. The duality argument we used here is adapted from that of Proposition 10 by
Morton and NeamtyMN]. If b, = g forallk = 0,1,2, ..., thenC = 1, and Theorem
2.6 reduces itself to Proposition 10[N].

Corollary 4.5. LetZ c $¢ be a finite set with mesh norii=) <1/(2L). Then for every
f € Ny, we have

k=L

. 1/2
If = sgLFN<CIF = oLl (Z bkdk) .

Here the constant C is independent of f.

Proof. For each fixed € $¢, we have

£ () = spLF100)]
= 1(f = sgLF1¥e)n, |
= (f = sglf1 b, = sgl D |
SIS = sl W — sl il

- 1/2
<CIf = sglf1lw, (Z bkdk) :

k=L

In the second line of the above argument, we used the fact/that) is the reproducing
kernel of the native spact,. In the third line, we used the orthogonality — s4[f1) L

@=. In the fourth line, we used the Cauchy—Schwartz Inequality. In the fifth line, we used
Theorem 4.3. O

Remark 4.6. The factor|| f — seL 1IN, in Corollary 4.5 is hard to estimate, and therefore
the obvious inequality

I = oL A1, <IFI,

is often applied to yield the following “cleaner” error estimate in Corollary 4.5:

If = sgLFAN<CIf Iy, D brdk.

k=L
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In the special case,f = a; and f € Ny, a so-called “error doubling” technique has been
used to derive an estimate fiof —s[ f1 A7 - The technique was first explored by Schaback
[Sc]in the Euclidean space setting, and has been subsequently adapted in spherical domains
in [LLRS,GL,MN], among other publications. Note tH%t: ay is equivalenttap = s,

where

W) (x,y) = /Sd Y(x)Y(zy) du(z).

In Proposition 4.7 below, we modify the proof of Proposition 12 by Morton and Neamtu
[MN] to obtain a slightly more general result.

Proposition 4.7. LetZ ¢ $¢ be a finite knot set with mesh nofm=) <1/(2L). Suppose
that there is aC > 0 such thatak/b,fg C. Then for eachf € N¢, we have

. 1/2
If = sy, <C (Z bkdk) 11l

k>L

Proof. To avoid awkward writing, we use the abbreviati§, to denote the(k, u)-
coefficient of the Fourier series expansiongff], that is,

oo dy

= Z Z §k,qu,,u-

k=0 u=1

We use the Cauchy—Schwartz inequality to deduce that

|If—S¢[f]|IM (fi [ =s¢lf D,

di
= Z b,:l Z S G = Se)
k=0 p=1
12 1/2
(Z a; Z(fk 0 ) (Z Z(fk = Sk )

u=1 k u=1
=CIflng L = sl f1ll2. (4.1)

Here| f — s4[f1ll2 denotes the regulak, norm of the functionf — s4[f]. HOlder's
inequality yields

||f—S¢[f]llz<wi/2||f—S¢[f]|| (4.2)
and Corollary 4.5 yields

o 1/2
If = seLFN<Cay?If = soLf 1l <Z bkdk) . (4.3)

k>L
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Connecting (4.1)—(4.3), we obtain

o 1/2
If = sglF N3, <CILF = sglf1lw, (Z bkdk) 11, (4.4)

k>L

If | f - s¢Lf1ln;, = 0, then the result is automatically true. Otherwise we divide by
ILf = sglf1lla; On both sides of Inequality (4.4) to get the desired resul.

On some occasions, it is desirable to express the error estimate in telmihi$ can be
done by makindh and 1/Lcompatible in the sense thiat= O(1/L). In Corollary 4.8 that
follows, we deal with an important special case.

Proposition 4.8. Let f € C?(S9), and lets,[ f] be the best approximant of f frofs as
characterized by Theore3.Assume that, < Ck~2* for somer >2/ > d /2, where C is
a constant independent of khen we have the estimate

Lf = sgLFU<CRZ =2 f — 54 £1ln,-

where C is a constant independent of f énhd

Proof. Let f € C?(S9). Then by Inequality (2.7) ifiNW], we have fe A, with

oo dy
Yoy =Y kD V(@)Y ().
k=0 u=1

If ap <ck™2%, then
@g(ZA@.

By Corollary 4.5, we have

. 1/2
If = sLAAN<CIS = oL, (Z kY dk> .

k>L

Using the relationl;y ~ k~1, we get the estimate

00 1/2

k>L

The desired result then follows.[]

Remark 4.9. The order of approximation given in Proposition 4.8 is the same as in Propo-
sition 3.1 in[NSW] and Corollary 3.3 ifNW]. We remind readers that the approximating
functions used in the three occasions are all different. In particular, ours are characterized
by Theorem 3.3 in this paper.
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